The new maps that have been created using the polygon data start on Line 416
#This code chunk is going to be where I dissolve the counties of each state so that I am left with only the outline of the state.
ca_counties$area <- st_area(ca_counties)
# ca_counties
ca <- ca_counties %>%
summarise(area = sum(area))
or_counties$area <- st_area(or_counties)
or <- or_counties %>%
summarise(area = sum(area))
wa_counties$area <- st_area(wa_counties)
wa <- wa_counties %>%
summarise(area = sum(area))
nv_counties$area <- st_area(nv_counties)
nv <- nv_counties %>%
summarise(area = sum(area))
#Cleaning and wrangling the data
data_scores <- full_join(data_goals, scores_clean) %>%
clean_names()
estuary_sf <- data_scores %>%
drop_na("long") %>%
st_as_sf(coords = c("long", "lat"), crs = 4326) %>%
clean_names()
estuary_reactive_format <- estuary_sf %>%
gather(score_type, score, -estuary_or_subbasin, -geometry)
# I have put all of the scores into a single column. This should help with the interactive map or if I make a shiny app of the map.
estuary_reactive_lat_lon <- data_scores %>%
drop_na("long") %>%
gather(score_type, score, -estuary_or_subbasin, - long, -lat)
#Making an interactive map with tmap
snapp_estuary_map <- tm_shape(estuary_sf) +
tm_dots(labels = "estuary_or_subbasin", col = "green", size = 0.1)
basemap <- tm_basemap("Esri.WorldImagery")
tmap_mode("view")
snapp_estuary_map +
basemap
Interactive Map of Estuaries: Hovering the mouse over an estuary will show the estuary’s name. Clicking on an estuary will show the estuaries scores.
# Making individual map of the ecology estuary scores
SNAPP_estuary_ecology_polygons <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = SNAPP_estuary_polygons, aes(fill = Ecol1), lwd = 0) +
scale_fill_gradientn(colors = c(
"#eff3ff",
"#6baed6",
"#084594"
)) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme_void()
# SNAPP_estuary_ecology_polygons
SNAPP_estuary_ecology_points <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = SNAPP_estuary_points, aes(color = Ecol1), size = 3) +
scale_color_gradientn(colours = c(
"#eff3ff",
"#6baed6",
"#084594"
)) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme_void()
# SNAPP_estuary_ecology_points
#Making individual map of the harvest estuary scores
SNAPP_estuary_harvest_polygons <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = SNAPP_estuary_polygons, aes(fill = Harvest1), lwd = 0) +
scale_fill_gradientn(
colors = c(
"#005a32",
"#74c476",
"#c7e9c0"
)) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme_classic()
# SNAPP_estuary_harvest_polygons
SNAPP_estuary_harvest_points <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = SNAPP_estuary_points, aes(color = Harvest1), size = 3) +
scale_color_gradientn(
colors = c(
"#005a32",
"#74c476",
"#c7e9c0"
)) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme_classic()
# SNAPP_estuary_harvest_points
# Making individual map of the restoration estuary scores
SNAPP_estuary_restoration_polygons <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = SNAPP_estuary_polygons, aes(fill = Restor1), lwd = 0) +
scale_fill_gradientn(colors = c(
"violet",
"purple"
)) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme(panel.background = element_blank())
# SNAPP_estuary_restoration_polygons
# Points
SNAPP_estuary_restoration_points <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = SNAPP_estuary_points, aes(color = Resto1), size = 3) +
scale_color_gradientn(colors = c(
"violet",
"purple"
)) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme(panel.background = element_blank())
# SNAPP_estuary_restoration_points
#Making individual map of the community esutary scores
SNAPP_estuary_community_polygons <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = SNAPP_estuary_polygons, aes(fill = Comm1), lwd = 0) +
scale_fill_gradientn(colors = c(
"green",
"blue",
"purple"
)) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme_bw()
SNAPP_estuary_community_points <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = SNAPP_estuary_points, aes(color = Comm1), size = 3) +
scale_color_gradientn(colours = c(
"green",
"blue",
"purple"
)) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme_bw()
# SNAPP_estuary_community_polygons
# SNAPP_estuary_community_points
#Here I am going to be working on displaying multiple attributes on one map I will be using points for these maps
ecology_harvest_map <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = SNAPP_estuary_points, aes(color = Harvest1, size = Ecol1)) +
scale_color_gradientn(
colors = c(
"#005a32",
"#74c476",
"#c7e9c0"
)) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme_bw()
ecology_restoration_map <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = SNAPP_estuary_points, aes(color = Resto1, size = Ecol1)) +
scale_color_gradientn(colors = c(
"violet",
"purple"
)) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50))
ecology_comm_map <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = SNAPP_estuary_points, aes(color = Comm1, size = Ecol1)) +
scale_color_gradientn(colors = c(
"green",
"blue",
"purple"
)) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50))
ecology_harvest_map
ecology_restoration_map
ecology_comm_map
#Here I will focus on maps with ecology scores over 0.5
high_ecology_polygons <- SNAPP_estuary_polygons %>%
filter(Ecol1 > 0.5)
high_ecology_points <- SNAPP_estuary_points %>%
filter(Ecol1 >= 0.5)
high_ecology_harvest_map <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = high_ecology_points, aes(color = Harvest1), size = 4) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme_bw()
high_ecology_restoration_map <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = high_ecology_points, aes(color = Resto1), size = 4) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme_bw()
high_ecology_comm_map <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = high_ecology_points, aes(color = Comm1), size = 4) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme_bw()
# high_ecology_harvest_map
# high_ecology_restoration_map
# high_ecology_comm_map
#This will be for a close up of estuarys with high ecology score
Zoom_high_ecology1 <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = high_ecology_polygons, fill = "red", color = "red") +
coord_sf(xlim = c(-125, -121.5), ylim = c(45, 49.5)) +
theme_bw()
Zoom_high_ecology2 <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = high_ecology_polygons, fill = "red", color = "red") +
coord_sf(xlim = c(-123.5, -118.5), ylim = c(34, 38.5)) +
theme_bw()
Zoom_high_ecology3 <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = mexico) +
geom_sf(data = high_ecology_polygons, fill = "red", color = "red") +
coord_sf(xlim = c(-120, -116), ylim = c(30, 34.5)) +
theme_bw()
Zoom_high_ecology1
Zoom_high_ecology2
Zoom_high_ecology3
#this will be trying to make the close up maps with the point data
Zoom_high_ecology1_points <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = high_ecology_points, color = "red", size = 3) +
coord_sf(xlim = c(-125, -121.5), ylim = c(45, 49.5)) +
theme_bw()
Zoom_high_ecology2_points <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = high_ecology_points, fill = "red", color = "red", size = 3) +
coord_sf(xlim = c(-123.5, -118.5), ylim = c(34, 38.5)) +
theme_bw()
Zoom_high_ecology3_points <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = mexico) +
geom_sf(data = high_ecology_points, fill = "red", color = "red", size = 3) +
coord_sf(xlim = c(-120, -116), ylim = c(30, 34.5)) +
theme_bw()
Zoom_high_ecology1_points
Zoom_high_ecology2_points
Zoom_high_ecology3_points
#Using scatterpie to put piecharts over map
#need wide format data
pie_data <- high_ecology_points %>%
select(-NCEASmap) %>%
rename(ecology = Ecol1, restoration = Resto1, harvest = Harvest1, commercial = Comm1) %>%
as.data.frame()
#using the scores from the 10 estuary/subbasins with radius proportional to Ecological score
pie_data$radius <- pie_data$ecology/2.5
Zoom_pie_1 <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_scatterpie(aes(x = Longitude, y = Latitude, group = Name, r = radius), data = pie_data,
cols = c("restoration", "harvest", "commercial"), color=NA, alpha=.8, show.legend = FALSE) +
# geom_scatterpie_legend(pie_data$radius, x=-121.5, y=49) +
coord_sf(xlim = c(-125.5, -121), ylim = c(45, 49.5)) +
theme_bw()
Zoom_pie_2 <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_scatterpie(aes(x = Longitude, y = Latitude, group = Name, r = radius), data = pie_data,
cols = c("restoration", "harvest", "commercial"), color=NA, alpha=.8, show.legend = FALSE) +
# geom_scatterpie_legend(pie_data$radius, x=-119.5, y=38) +
coord_sf(xlim = c(-123.5, -119), ylim = c(34.85, 38.5)) +
theme_bw()
Zoom_pie_3 <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = mexico) +
geom_scatterpie(aes(x = Longitude, y = Latitude, group = Name, r = radius), data = pie_data,
cols = c("restoration", "harvest", "commercial"), color=NA, alpha=.8, legend_name = "Score") +
geom_scatterpie_legend(pie_data$radius, x=-119.5, y=30.5, ) +
coord_sf(xlim = c(-120, -115), ylim = c(30, 34.5)) +
theme_bw()
# put it together
Zoom_pie_ecol_rad <- Zoom_pie_1 + Zoom_pie_2 + Zoom_pie_3
ggsave("figures/final_map_pie_ecol_rad.png", Zoom_pie_ecol_rad, width = 12, height = 6, dpi = 300)
#using a fixed radius
pie_data$radius <- .225
Zoom_pie_1_fix <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_scatterpie(aes(x = Longitude, y = Latitude, group = Name, r = radius), data = pie_data,
cols = c("ecology", "restoration", "harvest", "commercial"), color=NA, alpha=.8, show.legend = FALSE) +
coord_sf(xlim = c(-125.5, -120), ylim = c(45, 49.5)) +
theme_bw()
Zoom_pie_2_fix <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_scatterpie(aes(x = Longitude, y = Latitude, group = Name, r = radius), data = pie_data,
cols = c("ecology", "restoration", "harvest", "commercial"), color=NA, alpha=.8, show.legend = FALSE) +
coord_sf(xlim = c(-123.5, -119), ylim = c(34.8, 38.5)) +
theme_bw()
Zoom_pie_3_fix <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = mexico) +
geom_scatterpie(aes(x = Longitude, y = Latitude, group = Name, r = radius), data = pie_data,
cols = c("ecology", "restoration", "harvest", "commercial"), color=NA, alpha=.8, legend_name = "Score") +
coord_sf(xlim = c(-120, -115), ylim = c(30, 34.5)) +
theme_bw()
# put it together
Zoom_pie_ecol_rad_fixed <- Zoom_pie_1_fix + Zoom_pie_2_fix + Zoom_pie_3_fix
ggsave("figures/final_map_pie_ecol_rad_fixed.png", Zoom_pie_ecol_rad_fixed, width = 12, height = 6, dpi = 300)
#testing changing alpha to better view overlapping sites
high_ecology_rest_alpha <- ggplot() +
geom_sf(data = us_boundaries()) +
geom_sf(data = canada) +
geom_sf(data = mexico) +
geom_sf(data = high_ecology_points, aes(color = Resto1), size = 4, alpha = 0.75) +
coord_sf(xlim = c(-130, -115), ylim = c(30, 53)) +
scale_x_continuous(breaks = c(-130, -116)) +
scale_y_continuous(breaks = c(30, 40, 50)) +
theme_bw()
high_ecology_rest_alpha